
Coevolution of Neural Network 
and Computer Architecture

zsc@megvii.com
Aug. 2019

mailto:zsc@megvii.com


Software-hardware co-evolution

Propose new kind 
of Neural Network 
for hardware.

Define new 
hardware for 
Neural Network.



● Breakthroughs improve 
both accuracy and speed

○ Factorized Convolution 
(GoogleNet)

○ Skip connection (ResNet)
○ Fully Convolutional Network
○ Batch Normalization
○ Cyclic Learning Rate
○ NAS
○ Transfer Learning in NLP

Tradeoff between Accuracy and Speed

Speed

Accuracy

Saturation of 
Accuracy

No Free Lunch 
RegionSudden Death of 

Model

Death 
Zone

BreakThrough 
Technology





User cases: Deep Learning



Computer Architecture answer to Deep Learning 
Challenge
● Make it start: Conceptual Breakthrough

○ GPU: flexible powerhouse

● Make it work: Building product
○ ISA & Programming models: Graph Compiler and Execution Engine

● Make it cheap: Democratize
○ ASIC, Edge Computing, Cloud computing: mass production of all-in-one chips



Computation Stack

Silicon
● Partitioning & 

Planning
● Place & Route
● Timing Closure

Verilog
● Karnaugh map
● Finite State 

Machine

Architecture
● ISA
● Micro-code
● Resource 

allocation

Computation Graph 
Engine

● Kernels
● Execution Plan

Compiler
● Parallelism 

mining
● Memory latency 

hiding

Operating System
● Page table
● File system
● Interrupts



Computation Stack

Silicon
● Partitioning & 

Planning
● Place & Route
● Timing Closure

Verilog
● Karnaugh map
● Finite State 

Machine

Architecture
● ISA
● Micro-code
● Resource 

allocation

Computation Graph 
Engine

● Kernels
● Execution Plan

Compiler
● Parallelism 

mining
● Memory latency 

hiding

Operating System
● Page table
● File system
● Interrupts

How will this stack deal with changes?



Case study: Large Neural Networks

GoogLeNet

ResNet

Characteristics: many channels + side-branches + many layers

AlexNet



Case study: Large Neural Networks

Silicon Verilog Architecture Computation Graph 
Engine

CompilerOperating System

On-Chip-Memory 
for caching 
feature maps

● Instructions for 
convolutions & 
non-linearity

● Systolic Array

Static analysis + 
dynamic profiling 
for kernel 
selection + 
execution plan

Large page-table Auto-SIMD



Case study: Small Neural Networks

MobileNet

ShuffleNet

Characteristics: few channels + 1x1 convolutions

The shuffle operation is an efficient 
way of information mixing, but its 
uniqueness slows its adoption.

Lack of shortcut hurts its transfer 
learning ability.



Case study: Small Neural Networks

Silicon Verilog Architecture Computation Graph 
Engine

CompilerOperating System

On-Chip-Memory 
may be more 
important.

● Specialized support 
for few channel 
layers and 1x1 
convolutions.

● Different batching

Fusion of layers 
+ handcrafted 
kernels

● Lower overhead
● Non-batch perf.
● Page coloring Auto-SIMD



Pipeline approach
● With DL, Need to deal 

with batch data to 
improve computation / 
memory ratio



Instruction Size vs. Feature Size

● Composition of Instruction
○ Type: conv, concat, unpool, stride
○ Weights

● Feature / Weight = N * H * W / (K * Kh * Kw)
○ Feature = N * C * H * W
○ Weight = K * C * Kh * Kw
○ Getting smaller when later in 

Detection/Recognition NN
○ Relatively stable in image generation NN

● Efficiency suffers from low feature / weight ratio when 
small batch size

Channel



When a Neural Network Designers, a Computer 
Architect, a Compiler Expert and an OS Guru meet
● Designer wants

○ A reliable performance model
■ Open architecture design and assembly/microcode level exposure

○ Better profilers for runtime diagnostics and analyzers
○ Support for sparse matrices, dynamic operations

● Architect wants
○ Batch operations with constant delays
○ Regular memory access pattern subject to locality and many reuses
○ Streamlined memory/computation usage, no overwhelming peaks
○ Less number of operators

● Compiler Expert and OS Guru wants
○ To broker between the Designer and the Architect

■ Have a slow fallback for bizarre operators
■ Cutting peaks



Coevolution

We train our DL models 
and design our networks!

We design our processors and 
computers, from ISA to PCB!

Neural Network Designer

Computer Architects

We build our AI-products! From 
Javascript to Linux Kernels!

AI-product Programmers

S-platform 
Edge-computing 
platform

A-firmware 
Edge Device 
Firmware



Neural Network Designer

ShuffleNetDoReFa-net



Example: self-adjustable global channel quota
● k samples from n without replacement

○ follows multinomial hypergeometric distribution
○ satisfies EX_i = p_i

● SVHN-cropped:
○ channel distribution

■ base: 3 96, 128, 128, 256 | 512, 10; train 19/sec, misclassify 0.027
■ self-adjusted: 3, 17, 26, 100 | 409, 10; train 62/sec, misclassify 0.031

● 50% less #channel
■ self-adjusted: 4, 23, 51, 191 | 512, 10; train 41/sec, misclassify 0.028

● 30% less #channel



Computer Architect
"X Compiler": Optimizing & Autopar Compiler



Pipeline Scheduling



Single Neural Network: Semi-Static Scheduling
● Neural Networks are almost static

○ No branching
○ (almost always) Fixed length data: fixed input/output/intermediate size
○ Regular computation

● But there are "clouds"
○ DDR latency / bandwidth
○ Cache

● Dynamic Scheduling inevitable?



Multiple Neural Network: Semi-Static Scheduling
● Combo-NN

○ Multiple NN's may be triggered by the same chunk of input data
○ Though logically separate, can be "linked" together
○ Ad-hoc on-the-fly combo by JIT



Dyanmic Scheduling
● Complex memory state

○ Can Scheduling ensure OOM-free?
■ Interval analysis

○ Ensure proper recycling of resources when preemption
○ Exception mechanism

■ Spilling data to DDR when below watermark
■ May still not be safe

● Complex running time
○ Interrupts to CPU
○ Unbounded running time: Disk-level access



Scheduling Overview

Single NN

Semi-Static SchedulingCombo of NN's

Preemptive running

Dynamic Scheduling + 
Exception

Var-length data



AI-product Programmers
S-platform: Edge-computing platform A-firmware: Edge Device Firmware



Backup after this slide



Deep Learning Challenge
● Make it start: Conceptual Breakthrough
● Make it work: Building product
● Make it cheap: Democratize

https://medium.com/global-silicon-valley/the-evolution-of-mobile-computing-d273f23eda61



User cases: Reinforcement Learning

Characteristics: require fast & complex simulations

OpenSim
A human skeleton model for 
locomotive task modeling.

GTA 5
AirSim

Simulation for self-driving 
car/ADAS and Drones.


