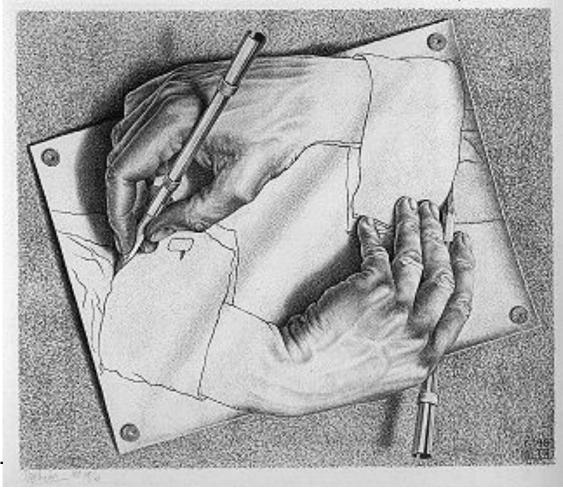


Coevolution of Neural Network and Computer Architecture

zsc@megvii.com Aug. 2019



Propose new kind of Neural Network for hardware.

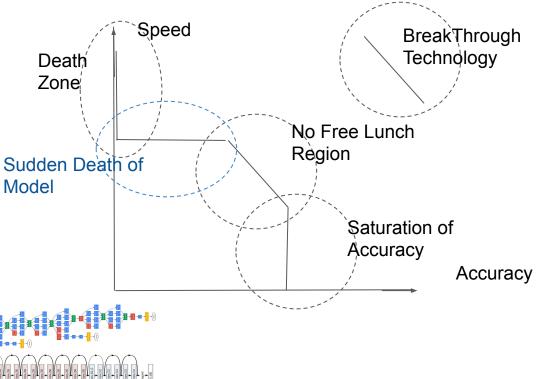
Define new hardware for Neural Network.

Software-hardware co-evolution

MEGVII町视

Tradeoff between Accuracy and Speed

- Breakthroughs improve both accuracy and speed
 - Factorized Convolution (GoogleNet)
 - Skip connection (ResNet)
 - Fully Convolutional Network
 - Batch Normalization
 - Cyclic Learning Rate
 - NAS
 - Transfer Learning in NLP



QA: 0.81 6, QA: 0.86, QA: 0.87 8, QA: 0.89 QA: 0.86 9, QA: 0.810, QA: 0.8141, QA: 0.912, QA: 0.88 4, QA: 0.9 5, QA: 0.9 9, QA: 0.8141, QA: 0.912, QA: 0.88 13, QA: 0.9 14, QA: 0.8 6, QA: 0.81¹⁷, QA: 0.86 24, QA: 0.91 18, QA: 0.89, QA: 0 , QA: 0.921, QA: 0.92, QA: 0.99, QA: 0.87 5. OA: 0 27, QA 0.87 26, QA: 89 23, QA: 0.92 53, QA: 0.8334, QA: 0.89 30, QA: 0.9 32, QA: 0.88 29, QA: 0.87, QA: 0.85 QA: 0.83 QA: 0.8 , QA: 0.8 42. QA QA: 0 9 46, QA: 0 47, QA: 0 88, QA: 0 899, QA 88 , QA: 0.8 50, QA: 0.84⁵¹, QA: 0 5, QA: 0.8

56, QA: 0.557, QA: 0.57, QA: 0.59, QA: 0.59, QA: 0.59, QA: 0.50, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.83, QA: 0.83, CA: 0.85, QA: 0.85, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.83, QA: 0.83, QA: 0.83, QA: 0.85, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.83, QA: 0.83, QA: 0.83, QA: 0.85, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.83, QA: 0.83, QA: 0.83, QA: 0.85, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.83, QA: 0.83, QA: 0.83, QA: 0.85, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.83, QA: 0.83, QA: 0.83, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.83, QA: 0.83, QA: 0.85, QA: 0.86, QA: 0.86, QA: 0.87, QA: 0.87, QA: 0.83, QA: 0.83, QA: 0.86, QA: 0.87, QA: 0.86, QA: 0.87, Q

71, QA: 0.7, QA: 0.7, QA: 7485/ 03,1QA: 69, QA: 0.67, QA: 0.8, QA:

71, QA: 91 QA: 0.75, QA: 74,857, 07,9,1 QA: 69, QA: 0 QA: 0 QA: 0.84, 0, QA: 0.84, 0, QA: 0.89, QA, 2, 9, QA: 0.9 80, QA 0.8

, QAL 0.87 89, QA: 0.90, QA: 0.87 QA: 0.88 83, QA: 0.89, QA: 0.89, QA: 0.89, QA: 0.895, QA: 0.895, QA: 0.83 86, QA: 0.97 QA: 0.88 95, QA: 0.8 92, QA: 0.87 95, QA: 0.87

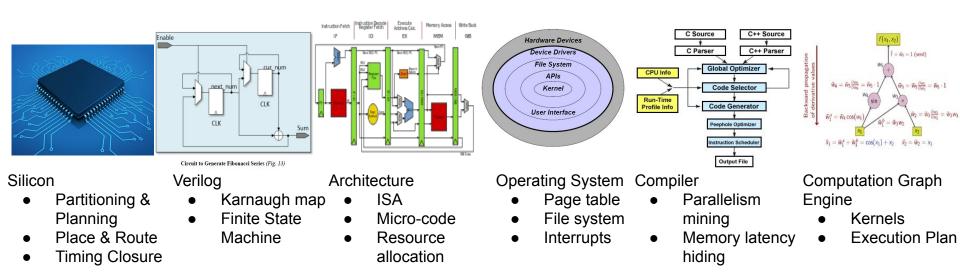
User cases: Deep Learning

MEGVII 旷视

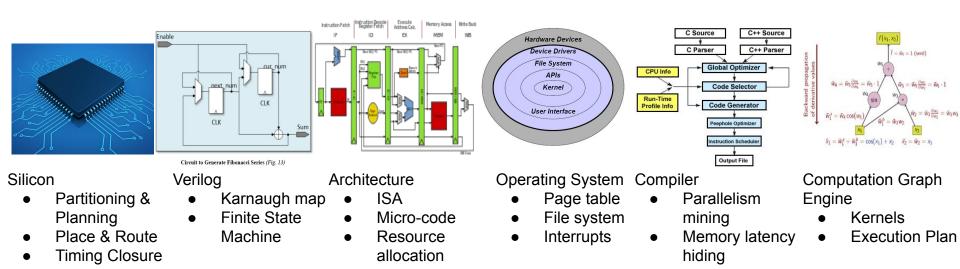
Computer Architecture answer to Deep Learning Challenge

- Make it start: Conceptual Breakthrough
 - GPU: flexible powerhouse
- Make it work: Building product
 - ISA & Programming models: Graph Compiler and Execution Engine
- Make it cheap: Democratize
 - ASIC, Edge Computing, Cloud computing: mass production of all-in-one chips

Computation Stack



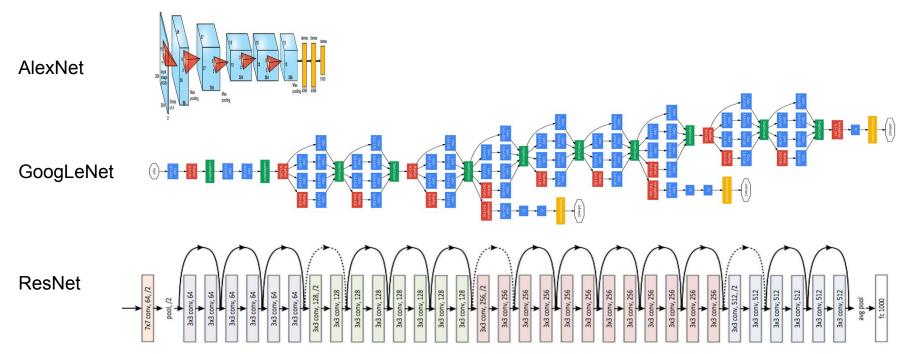
Computation Stack



How will this stack deal with changes?

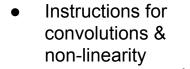
Case study: Large Neural Networks

Characteristics: many channels + side-branches + many layers



Case study: Large Neural Networks

On-Chip-Memory for caching feature maps

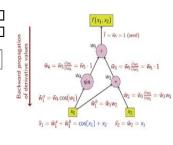


Systolic Array

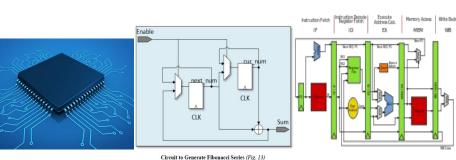
Large page-table

able Auto-SIMD

Static analysis + dynamic profiling for kernel selection + execution plan



Computation Graph Engine



Silicon

Circuit to Generate Fibonacci Series (Fig. 13)

Architecture

Hardware Devices Device Drivers File System APIs Kernel User Interface

Operating System

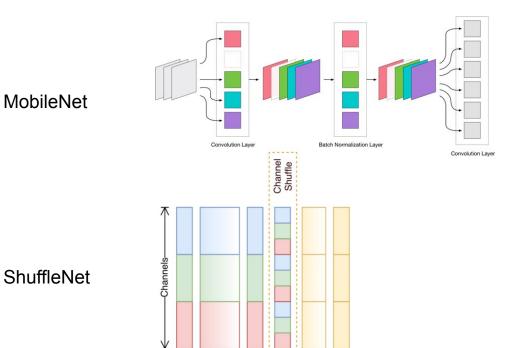
C Parser CPU Info Global Optimizer COde Selector Run-Time Profile Info Peephole Optimizer Instruction Schedulee Output File Compiler

C Source

C++ Source

Case study: Small Neural Networks

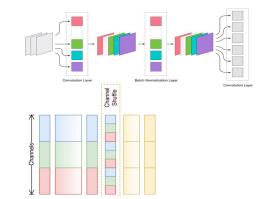
Characteristics: few channels + 1x1 convolutions



Lack of shortcut hurts its transfer learning ability.

The shuffle operation is an efficient way of information mixing, but its uniqueness slows its adoption.

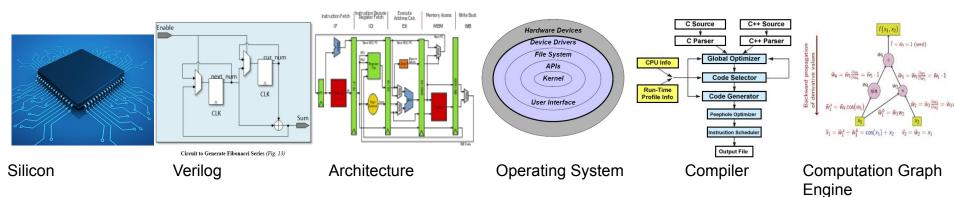
Case study: Small Neural Networks



On-Chip-Memory may be more important.

- Specialized support for few channel layers and 1x1 convolutions.
- Different batching
- Lower overhead
- Non-batch perf.
- Page coloring Auto-SIMD

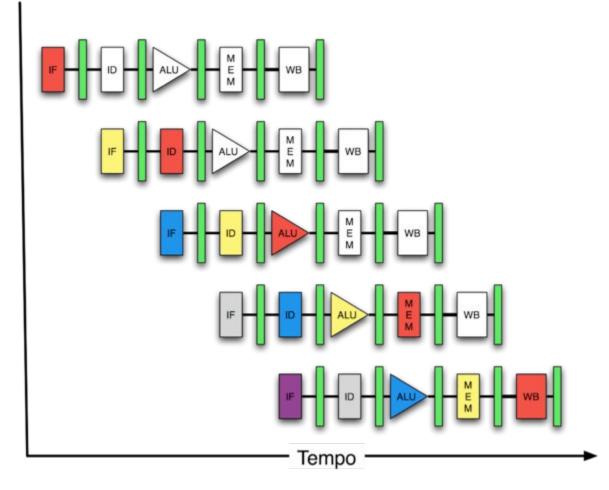
Fusion of layers + handcrafted kernels



MEGVII 旷视

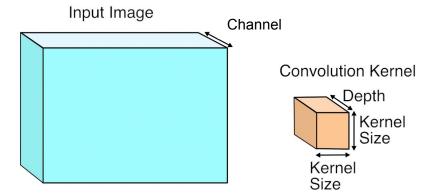
Pipeline approach

 With DL, Need to deal with batch data to improve computation / memory ratio



Instruction Size vs. Feature Size

- Composition of Instruction
 - Type: conv, concat, unpool, stride
 - Weights
- Feature / Weight = N * H * W / (K * Kh * Kw)
 - Feature = N * C * H * W
 - Weight = K * C * Kh * Kw
 - Getting smaller when later in Detection/Recognition NN
 - Relatively stable in image generation NN
- Efficiency suffers from low feature / weight ratio when small batch size

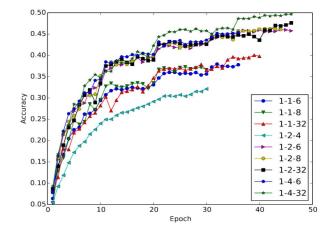


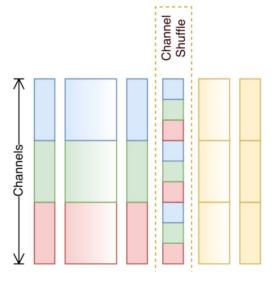
When a Neural Network Designers, a Computer Architect, a Compiler Expert and an OS Guru meet

- Designer wants
 - A reliable performance model
 - Open architecture design and assembly/microcode level exposure
 - Better profilers for runtime diagnostics and analyzers
 - Support for sparse matrices, dynamic operations
- Architect wants
 - Batch operations with constant delays
 - Regular memory access pattern subject to locality and many reuses
 - Streamlined memory/computation usage, no overwhelming peaks
 - Less number of operators
- Compiler Expert and OS Guru wants
 - To broker between the Designer and the Architect
 - Have a slow fallback for bizarre operators
 - Cutting peaks

Coevolution Neural Network Designer We train our DL models and design our networks! **AI-product Programmers Computer Architects** We build our AI-products! From We design our processors and Javascript to Linux Kernels! computers, from ISA to PCB! S-platform A-firmware Edge-computing Edge Device platform Firmware

Neural Network Designer





DoReFa-net

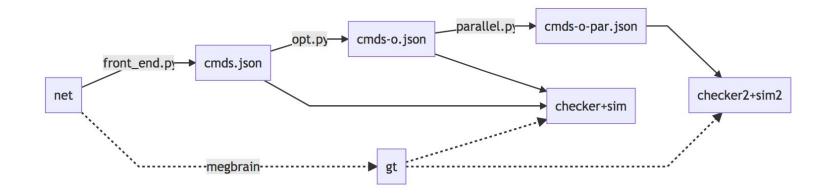
ShuffleNet

Example: self-adjustable global channel quota

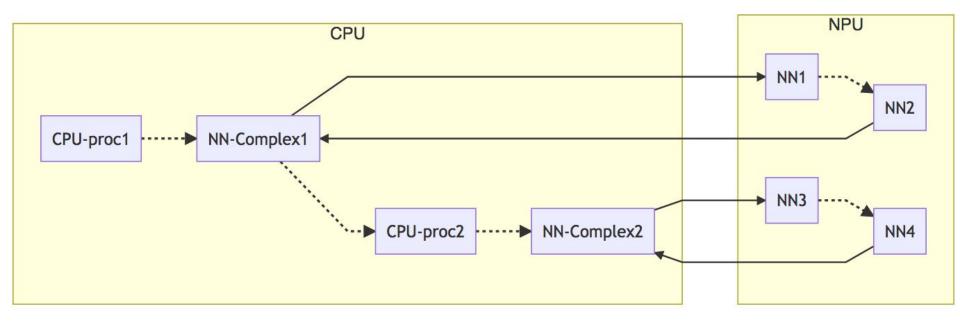
- k samples from n without replacement
 - follows multinomial hypergeometric distribution
 - o satisfies EX_i = p_i
- SVHN-cropped:
 - channel distribution
 - base: 3 96, 128, 128, 256 | 512, 10; train 19/sec, misclassify 0.027
 - self-adjusted: 3, 17, 26, 100 | 409, 10; train 62/sec, misclassify 0.031
 - 50% less #channel
 - self-adjusted: 4, 23, 51, 191 | 512, 10; train 41/sec, misclassify 0.028
 - 30% less #channel

Computer Architect

"X Compiler": Optimizing & Autopar Compiler



Pipeline Scheduling



MEGVII町视

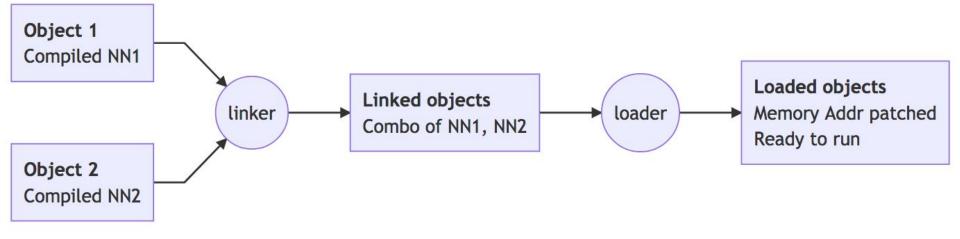
Single Neural Network: Semi-Static Scheduling

- Neural Networks are almost static
 - No branching
 - (almost always) Fixed length data: fixed input/output/intermediate size
 - Regular computation
- But there are "clouds"
 - DDR latency / bandwidth
 - Cache
- Dynamic Scheduling inevitable?

MEGVIII町视

Multiple Neural Network: Semi-Static Scheduling

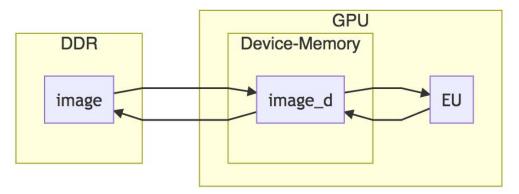
- Combo-NN
 - Multiple NN's may be triggered by the same chunk of input data
 - Though logically separate, can be "linked" together
 - Ad-hoc on-the-fly combo by JIT



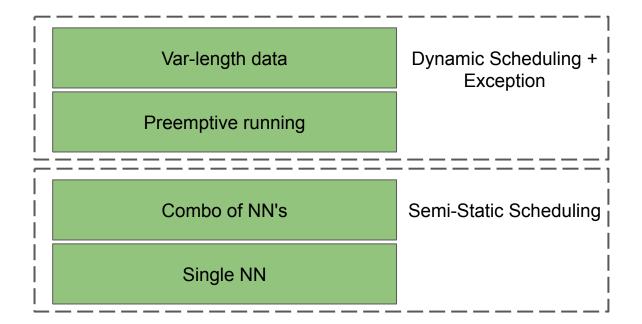
MEGVII 旷视

Dyanmic Scheduling

- Complex memory state
 - Can Scheduling ensure OOM-free?
 - Interval analysis
 - Ensure proper recycling of resources when preemption
 - Exception mechanism
 - Spilling data to DDR when below watermark
 - May still not be safe
- Complex running time
 - Interrupts to CPU
 - Unbounded running time: Disk-level access

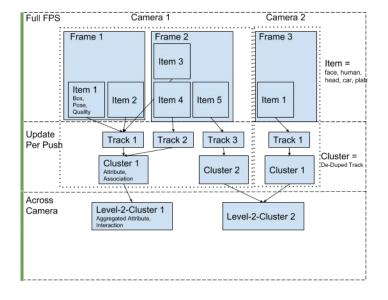


Scheduling Overview



AI-product Programmers

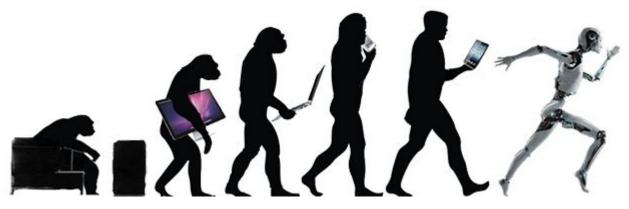
S-platform: Edge-computing platform **A-firmware**: Edge Device Firmware



Backup after this slide

Deep Learning Challenge

- Make it start: Conceptual Breakthrough
- Make it work: Building product
- Make it cheap: Democratize



https://medium.com/global-silicon-valley/the-evolution-of-mobile-computing-d273f23eda61

User cases: Reinforcement Learning

Characteristics: require fast & complex simulations

A human skeleton model for locomotive task modeling.

GTA 5 AirSim

OpenSim

Simulation for self-driving car/ADAS and Drones.